def calculate_angle(a,b,c):
a = np.array(a) # First
b = np.array(b) # Mid
c = np.array(c) # End
radians = np.arctan2(c[1]-b[1], c[0]-b[0]) - np.arctan2(a[1]-b[1], a[0]-b[0])
angle = np.abs(radians*180.0/np.pi)
if angle >180.0:
angle = 360-angle
return angle
cap = cv2.VideoCapture("./final.mp4")
counter = 0
stage = None
time = 0
left_elbow_list = []
right_elbow_list = []
left_knee_list = []
right_knee_list = []
with mp_pose.Pose(min_detection_confidence=0.5, min_tracking_confidence=0.5) as pose:
while cap.isOpened():
ret, frame = cap.read()
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image.flags.writeable = False
results = pose.process(image)
image.flags.writeable = True
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
try:
landmarks = results.pose_landmarks.landmark
left_shoulder = [landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].x,landmarks[mp_pose.PoseLandmark.LEFT_SHOULDER.value].y]
left_elbow = [landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].x,landmarks[mp_pose.PoseLandmark.LEFT_ELBOW.value].y]
left_wrist = [landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].x,landmarks[mp_pose.PoseLandmark.LEFT_WRIST.value].y]
left_elbow_angle = calculate_angle(left_shoulder, left_elbow, left_wrist)
right_shoulder = [landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].x,landmarks[mp_pose.PoseLandmark.RIGHT_SHOULDER.value].y]
right_elbow = [landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value].x,landmarks[mp_pose.PoseLandmark.RIGHT_ELBOW.value].y]
right_wrist = [landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].x,landmarks[mp_pose.PoseLandmark.RIGHT_WRIST.value].y]
right_elbow_angle = calculate_angle(right_shoulder, right_elbow, right_wrist)
right_hip = [landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].x,landmarks[mp_pose.PoseLandmark.RIGHT_HIP.value].y]
right_knee = [landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].x,landmarks[mp_pose.PoseLandmark.RIGHT_KNEE.value].y]
right_ankle = [landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].x,landmarks[mp_pose.PoseLandmark.RIGHT_ANKLE.value].y]
right_knee_angle = calculate_angle(right_hip, right_knee, right_ankle)
left_hip = [landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].x,landmarks[mp_pose.PoseLandmark.LEFT_HIP.value].y]
left_knee = [landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].x,landmarks[mp_pose.PoseLandmark.LEFT_KNEE.value].y]
left_ankle = [landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].x,landmarks[mp_pose.PoseLandmark.LEFT_ANKLE.value].y]
left_knee_angle = calculate_angle(left_hip, left_knee, left_ankle)
cv2.putText(image, str(left_elbow_angle),
tuple(np.multiply(left_elbow, [300, 700]).astype(int)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA
)
cv2.putText(image, str(right_elbow_angle),
tuple(np.multiply(right_elbow, [300, 700]).astype(int)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA
)
cv2.putText(image, str(right_knee_angle),
tuple(np.multiply(right_knee, [300, 700]).astype(int)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA
)
cv2.putText(image, str(left_knee_angle),
tuple(np.multiply(left_knee, [300, 700]).astype(int)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2, cv2.LINE_AA
)
if(time<200):
time = time +1
elif(time>=200):
left_elbow_list.append(left_elbow_angle)
right_elbow_list.append(right_elbow_angle)
left_knee_list.append(left_knee_angle)
right_knee_list.append(right_knee_angle)
time = 0
# if angle > 160:
# stage = "down"
# if angle < 30 and stage =='down':
# stage="up"
# counter +=1
except:
pass
# cv2.rectangle(image, (0,0), (225,73), (245,117,16), -1)
# cv2.putText(image, 'REPS', (15,12),
# cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1, cv2.LINE_AA)
# cv2.putText(image, str(counter),
# (10,60),
# cv2.FONT_HERSHEY_SIMPLEX, 2, (255,255,255), 2, cv2.LINE_AA)
# cv2.putText(image, 'STAGE', (65,12),
# cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1, cv2.LINE_AA)
# cv2.putText(image, stage,
# (60,60),
# cv2.FONT_HERSHEY_SIMPLEX, 2, (255,255,255), 2, cv2.LINE_AA)
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_pose.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(245,117,66), thickness=2, circle_radius=2),
mp_drawing.DrawingSpec(color=(245,66,230), thickness=2, circle_radius=2)
)
cv2.imshow('Mediapipe Feed', image)
if cv2.waitKey(10) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
'인공지능 공부 > 컴퓨터 비전' 카테고리의 다른 글
2022_Ukraine Russia War visualization (0) | 2022.04.07 |
---|---|
Age, Gender & Ethnicity Prediction (0) | 2022.04.07 |
(딥러닝) Face Mask Detection (0) | 2022.03.24 |
(computer vision) IOU 구하기 (0) | 2021.06.30 |
(computer vision) selective search Object Detection (0) | 2021.06.30 |