인공지능 공부/pytorch

(2022.06.30) pytorch linear_regression

'''
1) Design model(input, output, forward pass)

2) Construct loss and optimizer

3) Traning loop

- forward pass : compute prediction and loss
- backward pass : gradients
- updata weights
'''

import torch
import torch.nn as nn
import numpy as np
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

# prepare data

bc = datasets.load_breast_cancer()
X, y = bc.data, bc.target

n_samples, n_features = X.shape

print(n_samples, n_features)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1234)

# scale
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

X_train = torch.from_numpy(X_train.astype(np.float32))
X_test = torch.from_numpy(X_test.astype(np.float32))
y_train = torch.from_numpy(y_train.astype(np.float32))
y_test = torch.from_numpy(y_test.astype(np.float32))

y_train = y_train.view(y_train.shape[0], 1)
y_test = y_test.view(y_test.shape[0], 1)

# model
#f = wx+b , sigmoid at the end

class LogisticRegression(nn.Module):
    def __init__(self, n_input_features):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(n_input_features, 1)

    def forward(self,x):
        y_predicted = torch.sigmoid(self.linear(x))
        return y_predicted

model = LogisticRegression(n_features)
# loss and optimizer
learning_reate = 0.01
criterion = nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr = learning_reate)

# training loop
num_epochs = 100
for epoch in range(num_epochs):
    # foward pass and loss
    y_predicted = model(X_train)
    loss = criterion(y_predicted, y_train)

    # backward pass
    loss.backward()


    # updates
    optimizer.step()

    #zero_gradients
    optimizer.zero_grad()

    if (epoch +1) % 10 == 0:
        print(f'epoch: {epoch+1}, loss = {loss.item():.4f}')

with torch.no_grad():
    y_predicted = model(X_test)
    y_predicted_cls = y_predicted.round()
    acc = y_predicted_cls.eq(y_test).sum()/ float(y_test.shape[0])
    print(f'accuracy = {acc:.4f}')

'인공지능 공부 > pytorch' 카테고리의 다른 글

(2022.07.03) Brain Tumor MRI detection  (0) 2022.07.03
(2022.07.01) Pytorch Rice Classification  (0) 2022.07.01
(2022.07.01) CNN  (0) 2022.07.01
(2022.07.01) Feed Forward Net  (0) 2022.07.01
(2022.06.30) Dataset and Dataloader  (0) 2022.06.30