import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
#device config
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
#hyper parmameters
input_size = 784 # 28*28
hidden_size = 100
num_classes = 10
num_epochs = 2
batch_size = 100
learning_rate = 0.001
#MNIST
train_dataset = torchvision.datasets.MNIST(root="./data", train=True,
transform=transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.MNIST(root="./data", train=False,
transform=transforms.ToTensor(), download=True)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
class NeuralNet(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNet, self).__init__()
self.l1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.l2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.l1(x)
out = self.relu(out)
out = self.l2(out)
return out
model = NeuralNet(input_size, hidden_size, num_classes)
# loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
#trainig loop
n_total_steps = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 100, 1, 28, 28
# 100, 784
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
# forward
outputs = model(images)
loss = criterion(outputs, labels)
# backwards
optimizer.zero_grad()
loss.backwards()
optimizer.step()
if (i+1) % 100 == 0:
print(f'epoch {epoch+1} / {num_epochs}, step {i+1} / {n_total_steps}, loss = {loss.item():.4f}')
# test
with torch.no_grad():
n_correct = 0
n_smaples = 0
for images, labels in test_loader:
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
outputs = model(images)
# value, index
_, predictions = torch.max(outpus, 1)
n_samples += labels.shape[0]
n_correct += (predictions == labels).sum().item()
acc = 100.0 * n_correct / n_samples
print(f'accuracy = {acc}')